Appendix

Reciprocity through ratings:

An experimental study of bias in evaluations

Simon D. Halliday* Jonathan Lafky[†]

A Theory Appendix

To characterize rater behavior we need only compare utilities when r = G versus $r = \emptyset$ and when r = B versus $r = \emptyset$. To see this, observe first that the requirement for a rater to give a positive rating rather than a negative rating is

$$\alpha(a) \cdot \pi + \beta \cdot q - c > \alpha(a) \cdot 0 + \beta \cdot E(k) - c$$

Or equivalently

$$\alpha(a) \cdot \pi + \beta \cdot (q - E(k)) > 0 \tag{1}$$

Compare this to the condition for giving a positive rating rather than no rating:

$$\alpha(a) \cdot \pi + \beta(q - E(k)) > 2c \tag{2}$$

The sum of the rater's concern for seller and concern for the buyer must simply be positive in the first case, but must larger than 2c in the second case. In other words, equation 2 implies equation 1. This means that, as the rater's utility (the sum of the α and β terms) falls, the condition to switch to $r = \emptyset$ will always bind before the condition to switch to r = B. Thus to understand when the rater will give r = G we need only consider r = G versus $r = \emptyset$.

A nearly identical argument shows that, as the sum of the α and β terms rises, the condition for the rater to switch from r=B to $r=\emptyset$ will always bind before the condition for switching from r=B to r=G.

^{*}Smith College Department of Economics, Pierce Hall 107, 21 West St, Northampton, MA, 01062, shalli-day@smith.edu, Phone: (413) 585-3529

 $^{^\}dagger \text{Corresponding}$ Author. Carleton College Department of Economics, Northfield, MN 55057. jlafky@carleton.edu. Phone: (507) 222-4103

B Additional Regressions

TABLE A1: Amount transferred by seller, restricted by treatment.

	(1)	(2)	(3)	(4)
	Tobit Free	OLS Free	Tobit Costly	OLS Costly
Quality	0.130	0.117	0.220**	0.206**
	(0.118)	(0.106)	(0.100)	(0.0886)
Female	-3.308***	-3.023***	0.438	0.233
	(1.065)	(0.948)	(0.836)	(0.729)
Age	-0.198	-0.187	-0.0841	-0.0616
	(0.314)	(0.284)	(0.245)	(0.209)
Constant		10.88*		4.632
		(5.447)		(4.339)
\overline{N}	45	45	87	87
Adjusted R^2		0.160		0.0303

Standard errors in parentheses

Censoring at 0: 5 (Free) and 13 (Costly), Censoring at 16: n=1 (Costly).

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

TABLE A2: Probability that buyer follows rater recommendations.

(1)	(2)	(3)	(4)
OLS	Probit	OLS	Probit
-0.0457	-0.0442	-0.0549	-0.0528
(0.104)	(0.101)	(0.0600)	(0.0615)
0.149	0.141*	0.0258	-0.00212
(0.0891)	(0.0848)	(0.0610)	(0.0493)
0.0177	0.0205	0.0316	0.0280*
(0.0136)	(0.0186)	(0.0204)	(0.0161)
,	,	,	,
-0.0343	-0.0347		
(0.0987)	(0.0961)		
		0.861***	0.444***
			0
		(0.0566)	(0.0692)
0.101		-0.590	
(0.305)		(0.427)	
132	132	74	74
-0.000589		0.702	
	OLS -0.0457 (0.104) 0.142 (0.0891) 0.0177 (0.0136) -0.0343 (0.0987) 0.101 (0.305) 132	OLS Probit -0.0457 -0.0442 (0.104) (0.101) 0.142 0.141* (0.0891) (0.0848) 0.0177 0.0205 (0.0136) (0.0186) -0.0343 -0.0347 (0.0987) (0.0961) 0.101 (0.305) 132 132	OLS Probit OLS -0.0457 -0.0442 -0.0549 (0.104) (0.101) (0.0600) 0.142 0.141* 0.0258 (0.0891) (0.0848) (0.0610) 0.0177 0.0205 0.0316 (0.0136) (0.0186) (0.0204) -0.0343 -0.0347 (0.0961) 0.861*** (0.0566) 0.101 -0.590 (0.305) (0.427) 132 132 74

Standard errors in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

TABLE A3: Rating type estimated by ordered probit without interaction terms.

	(1)	(2)	(3)	(4)
	Coefficients	Do not Choose	No Rating	Choose
Cost	0.241	-0.0708	-0.000892	0.0717
	(0.248)	(0.0738)	(0.00713)	(0.0721)
Quality	0.0419	-0.0123*	-0.000155	0.0125^{*}
	(0.0261)	(0.00747)	(0.00130)	(0.00759)
Transfer	0.139^{***}	-0.0410***	-0.000516	0.0415^{***}
	(0.0325)	(0.00837)	(0.00429)	(0.00857)
Female	0.00507	-0.00149	-0.0000188	0.00151
	(0.200)	(0.0588)	(0.000712)	(0.0595)
Age	0.00815	-0.00240	-0.0000302	0.00243
	(0.0651)	(0.0192)	(0.000348)	(0.0194)
Cutoff 1	0.807			
	(1.441)			
Cutoff 2	2.131			
	(1.450)			
\overline{N}	132	132	132	132

Standard errors in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

TABLE A4: Rating type estimated by ordered probit with interaction terms.

	(1)	(2)	(3)	(4)
	Coefficients	Do not Choose	No Rating	Choose
Cost	1.047	-0.302	-0.00956	0.311
	(0.990)	(0.272)	(0.0317)	(0.281)
Quality	0.0451	-0.0130	-0.000412	0.0134
	(0.0559)	(0.0158)	(0.00138)	(0.0162)
Transfer	0.229^{**}	-0.0660***	-0.00209	0.0681^{***}
	(0.0935)	(0.0232)	(0.00683)	(0.0249)
Female	0.0293	-0.00845	-0.000268	0.00872
	(0.200)	(0.0577)	(0.00175)	(0.0593)
Age	0.0215	-0.00620	-0.000197	0.00640
	(0.0644)	(0.0185)	(0.000874)	(0.0191)
$Quality \times Cost$	0.000296	-0.0000852	-0.00000270	0.0000879
	(0.0596)	(0.0172)	(0.000546)	(0.0177)
Amount Received \times Cost	-0.127	0.0365	0.00116	-0.0376
	(0.0973)	(0.0261)	(0.00391)	(0.0275)
Cutoff 1	1.733			
	(1.884)			
Cutoff 2	3.062			
	(1.925)			
N	132	132	132	132

Standard errors in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01